
Abstract The pattern of genetic variation within and
among natural populations of broomrape (Orobanche cre-
nata Forsk.) from southern Spain was analysed by RAPD
markers. Hierarchical analysis of phenotypic diversity 
using AMOVA was performed to analyse the partitioning
of the variation among populations and among individu-
als. Although most of the genetic diversity was attribut-
able to differences among individuals within a population
(94.29%), significant φst values among populations sug-
gested the existence of phenotypic differentiation. More-
over, corresponding HOMOVA analysis revealed that mo-
lecular variances were significantly heterogeneous among
populations although no clear grouping pattern could be
established. These results are to be expected considering
the predominant outcrossing behaviour of O. crenata.
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Introduction

Broomrape (Orobanche crenata Forsk.) is a holoparasitic
weed that seriously attacks legume crops, such as faba
bean, lentils, peas, chickpea and vetch, but also a large

number of wild legume species (Cubero 1983), being a
major constraint for legume production in Mediterranean
countries. Several control methods have been proposed
such as hand weeding, chemical or biological control,
delayed sowing and crop rotation, but all of them with
uncertain success. The extraordinary high number of tiny
seeds, their prolonged viability in the soil and its broad
host range make its control particularly difficult.

The study of population genetic variability of crop
pathogens is of great importance since the understanding
of the variability within and between pathogenic popula-
tions is essential if selection programmes need to target
sources of resistance at different areas and suitable
breeding strategies need to be developed.

Over the years detection of genetic variation has pro-
gressed gradually from morphological or physiological
analysis to electrophoretic assays of biochemical and
molecular DNA variation among individuals. Although
morphological markers have been widely used in diver-
sity studies of a large number of species, their use in
Orobanche has been quite difficult (Musselman 1994).
Some of the disadvantages are related with: (1) the in-
herent morphological variation within populations re-
flected in biological aspects like chromosomal aberra-
tions (Cubero and Moreno 1991) or reproduction mecha-
nisms, (2) the reduction of available characters in diver-
sity studies that holoparasitism represents, since Oro-
banche species do not have chlorophyll or leaves and 
only develop false roots, and (3) the ability to infect 
different hosts, which can promote changes in plant 
morphology (Musselman and Parker 1982). Since mor-
phological markers also vary with environmental chang-
es and are subjected to estimation errors, alternative
strategies that overcome these difficulties are needed.

Isozymes were the first markers used in diversity
studies in this genus. Verkleij et al. (1986) found isoen-
zymatic differences between Orobanche aegyptiaca and
O. crenata. Isozyme studies have also been used in intra-
specific variation among Orobanche cumana (Castejón-
Muñoz et al. 1991) and O. crenata populations (Verkleij
et al. 1989, 1991). However, the number of isozyme
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Fig. 1 Six O. crenata popula-
tions sampled from naturally
infected faba bean plants from
different locations on southern
Spain (Andalucía)

aim of this work is to determine the genetic relationship
among populations of O. crenata collected from faba
bean fields in Andalucía using RAPD markers.

Materials and methods

Materials

Plant material

Six O. crenata Forsk. populations sampled from naturally infected
faba bean plants from different locations in southern Spain (Anda-
lucía) were used in the study. The sampled locations were:
Córdoba (north-western Andalucía), Mengíbar (province of Jaén,
north-eastern Andalucía), Carmona (province of Sevilla, western
Andalucía), Jerez (province of Cádiz, south-western Andalucía),
Pinos Puente and Purchil (province of Granada, south-eastern 
Andalucía). Each population consisted of ten O. crenata mature
plants (Fig. 1).

Methods

RAPD analysis

Floral buds were used for DNA extraction using the method pro-
posed by Lassner et al. (1989), modified by Torres et al. (1993).
For RAPD analysis, approximately 20 ng of genomic DNA was
used as a template in a 25-µl volume per PCR reaction. Mixture
composition and reaction conditions were as described by 
Williams et al. (1990) with slight modifications (Torres et al.
1993). Reaction mixtures were covered with a drop of mineral oil.
Products were amplified in a Termocycler Perkin Elmer Cetus 480
(Perkin Elmer Cetus, Calif., USA). A total of 23 RAPD primers
(Table 1) were analysed. Nineteen of them named OP were pur-

studies of genetic variability in parasitic plants is still re-
duced when compared with the large amount of data in
other species (Hamrick and Godt 1989). As isozymes are
gene products they vary depending on the tissue, the
plant developmental stage or the environmental condi-
tions. Furthermore, the number of resolved loci is limit-
ed and some genetic differences can not be detected.

Some of these problems have been resolved with
DNA markers that present great power to resolve differ-
ent classes of mutational changes. The development of
random amplified polymorphic DNA (RAPD) markers
has provided a powerful tool for the investigation of 
genetic diversity. These markers are simple and rapid
and do not require prior knowledge of the genome be-
cause they rely on universal sets of primers. RAPD
markers have been successfully used to describe the ge-
netic structure of plant populations (Huff et al. 1993;
Shah et al. 1994; Karihaloo et al. 1995; Le Corre et al.
1997). In Orobanche, molecular markers have been used
in inter-specific diversity studies (Katzir et al. 1996;
Paran et al. 1997; Zeid et al. 1997) and population stud-
ies in O. cumana (Gagne et al. 1998) and O. aegyptiaca
(Joel et al. 1998). Wolfe and dePamphilis (1997) used
the photosynthetic rbcL gene of the plastid genome in
evolutionary studies with four species of the genus.

In the Mediterranean area O. crenata causes large
losses in legume crops, being especially harmful in 
Andalucía (southern Spain). However, information con-
cerning the parasitic population structure and the pro-
cesses affecting its change is lacking in O. crenata. The

Table 1 Sequences of RAPD primers used in the analysis of O. crenata populations

Primer Sequence (5´–3´) Primer Sequence (5´–3´) Primer Sequence (5´–3´)

OPB03 CATCCCCCTG OPAH04 CTCCCCAGAC OPAA07 CTACGCTCAC
OPE17 CTACTGCCGT OPAG04 GGAGCGTACT OPAB07 GTAAACCGCC
OPI16 TCTCCGCCCT OPD02 GGACCCAACC OPAH13 TGAGTCCGCA
OPG13 CCACACTACC OPG07 GAACCTGCGG MER02 GTTAGGTCGT
OPP09 GTGGTCCGCA OPJ01 CCCGGCATAA MER04 GTCCCGTTAC
OPU09 CCACATCGGT OPJ20 AAGCGGCCTC MER06 GGTGATGTCC
OPV09 TGTACCCGTC OPS04 CACCCCCTTG MER07 GGGTTGCCGT
OPAB04 GGCACGCGTT OPU11 AGACCCAGAG
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chased in commercially available kits from OPERON Technolo-
gies (Alameda, USA). The rest named MER, were chosen because
they produced intense and consistent amplification products in a
previous study (Torres et al. 1993). Amplified products were elec-
trophoresed on 1% agarose, 1% Nu-Sieve agarose, 1×TBE gels,
and visualised by ethidium bromide staining.

Statistical analysis

Amplified fragments were scored for the presence (1) or absence
(0) of homologous bands to create a binary matrix of the different
RAPD phenotypes. Estimates of diversity within populations (H0)
were calculated using Shannon’s information measure, H0=–Σ Pi
log2 Pi, where Pi is the phenotypic frequency (Lewontin 1972).
Shannon’s index of phenotypic diversity (Chalmers et al. 1992)
was used to measure the total diversity (Ht) as well as the intra-
population (Hp) diversity. The phenotypic differentiation among
populations Dpt=(Ht–Hp)/Ht, was calculated.

The analysis of molecular variance (AMOVA) was used to par-
tition the total phenotypic variance into within-populations and
among-populations (Excoffier et al. 1992). The AMOVA was per-
formed using the RAPD profile as a haplotype (Huff et al. 1993)
with WinAMOVA ver. 1.55 software (Excoffier 1992). The dis-
tance among individuals was measured as an Euclidean metric dis-
tance that was calculated between all possible pairwise combina-
tions of molecular genetic markers (RAPD bands) for individual
plants. The variance components were tested statistically by non-
parametric randomisation tests using 1,000 permutations.

A non-parametric test for the homogeneity of molecular vari-
ance (HOMOVA) based on Bartlett’s statistics (Bartlett 1937) 
was performed to test variance homogeneity among populations
(Stewart and Excoffier 1996). Bartlett’s null distributions were 
obtained after 1,000 permutations.

Pairwise population comparisons examined with AMOVA 
resulted in values of φst that are equivalent to the proportion of 
the total variance that is partitioned between two populations. To
obtain a distance matrix, φst values between each pair of popula-
tions were interpreted as the inter-population distance average be-
tween any two populations (Huff 1997; Gustine and Huff 1999). A
cluster analysis based on the φst matrix was performed using the
UPGMA method of the TFPGA 1.3 software package (Miller
1997).

The cophenetic correlation coefficient was calculated and
Mantel’s test (Mantel 1967) was performed to check the goodness
of fit of a cluster analysis to the matrix on which it was based. The

randomisation procedure as implemented in TFPGA software
package included 1,000 permutations.

Jaccard’s similarity coefficient (Jaccard 1908; Gower 1972)
was computed using the SYSTAT 7.0 software package. A cluster
analysis based on the similarity matrix was performed using the
UPGMA method and the dendogram was obtained in order to 
visualise the relationships among single individuals.

Results and discussion

The 23 RAPD primers analysed generated 121 clear and
reproducible bands that were used in the population anal-
ysis. From the primers analysed 91% were polymorphic
and the number of bands per primer varied from 2 to 9
with an average of 5.26 bands/primer. Out of 121 bands,
62 were polymorphic and the number of polymorphic
fragments per primer ranged from 1 to 7. No diagnostic
markers were found and population discrimination was
done using band frequencies. A diagnostic marker is de-
fined as a marker with a frequency p>0.50 in one popu-
lation, but absent in the other (Rodriguez et al. 1999).
The proportion of polymorphic loci varied among popu-
lations with the highest proportion in Pinos Puente
(0.806) and the lowest in Carmona and Córdoba (0.661)
(Table 2). None of the populations displayed unique
bands.

The diversity analysis within populations using 
Shannon’s information measure revealed the highest in-
tra-population diversity in Jerez and Pinos Puente
(0.636). This study detects that most of the variation
from the total diversity occurs within populations
(1–Dpt=77%) (Table 2).

Hierarchical analysis of phenotypic diversity using
AMOVA was performed to analyse the partitioning of
the variation among populations and among individuals
(Table 3). Although most of the genetic diversity was 
attributable to differences among individuals within a
population (94.29%), the significant φst value among

Table 2 Phenotypic diversity
revealed by 121 RAPD bands
in six O. crenata populations
from Andalucía (Spain). Ab-
breviations: Ht, total diversity;
Hp, intra-population diversity;
Dpt, phenotypic differentiation
among populations; N: number
of individuals per population

Source of N Proportion of Shannon’s index of 
variation polymorphic loci phenotypic diversity

Population
Jerez 10 0.774 0.636
Carmona 10 0.661 0.515
Mengíbar 10 0.790 0.603
Pinos Puente 10 0.806 0.636
Purchil 10 0.677 0.396
Córdoba 10 0.661 0.411
Ht 0.692
Hp 0.533
Dpt 0.230

Table 3 AMOVA and HOMOVA analysis for the partitioning of RAPD variation among and within O. crenata populations from Andalucía

Source of variation df Variance % Total φ-statistics p-value Bartlett’s p-value
components variance index

Among populations 5 0.54 5.71 φst=0.057 <0.001 Bp=0.2286 <0.001
Within populations 54 8.86 94.29
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populations (φst=0.057; p<0.001) suggested the existence
of phenotypic differentiation. Moreover, corresponding
HOMOVA analysis reveals that the molecular variances
were significantly heterogeneous among populations
(Bp=0.2286, p<0.001) (Table 3).

Between each pair of populations φst and HOMOVA
values of molecular variances were significant in 53.3%
and 46.6% of the cases respectively (Tables 4 and 5),
suggesting the existence of phenotypic differentiation.
Jaccard’s similarity coefficient varied from 0 to 0.44 be-
tween different pairs of individuals and the UPGMA
method showed a good fit to the matrix on which it was
based, revealing a significant cophenetic correlation co-
efficient (r=0.93419; p=0.003). The dendogram obtained
by the UPGMA method did not show clear separation
between populations (data not shown) and further group-
ing of individuals into separate populations was highly
inconsistent.

Considering the significant φst and HOMOVA values
among populations we tried to define a grouping pattern
performing the AMOVA by attending to different 
criteria: (1) oriental or occidental origin, considering 
two groups of three populations each (Jerez/Carmona/
Córdoba vs. Mengíbar/Pinos Puente/Purchil); (2) geo-
graphical distance with three groups of two populations
each (Mengíbar/Córdoba, Pinos Puente/Purchil vs.

Jerez/Carmona); and (3) vicinity to the Guadalquivir 
river valley, comparing two groups of four and two 
populations (Jerez/Carmona/Mengíbar/Córdoba vs. Pinos
Puente/Purchil) (Fig. 1). The two-way nested AMOVA
analysis was used to partition further the total phenotyp-
ic variance into within populations, among populations
within hypothetical groups, and among groups. In the
three cases considered we observed that the variance
among groups was not significant (Table 6). Thus, none
of these grouping hypotheses was valid, preventing the
detection of a definitive pattern of variation.

This study shows that there is no clear tendency in the
distribution of the genetic variability when considering
geographical distances in O. crenata populations from
Andalucía. RAPD analysis has detected low genetic dif-
ferentiation among populations and considerable varia-
tion among individual broomrape plants within a popula-
tion. Our results are similar to those obtained with O.
crenata populations from Israel and Egypt by Paran et al.
(1997) and Zeid et al. (1997) respectively, supporting the
existence of high gene flow among populations. Studies
with phytopathogenic fungi that have detected low 
differentiation among populations (Boeger et al. 1993;
Hamelin et al. 1995) have attributed these results to a
high gene flow between them or to the existence of a
common ancestor (Hamelin et al. 1995). In the case of

Table 4 Inter-population dis-
tance matrix φst for the six 
O. crenata populations. Lower
matrix diagonal: φst value –
proportion of the total variance
that is partitioned between two
populations. Upper matrix 
diagonal: corresponding p
values

Población Jerez Carmona Mengíbar Pinos Puente Purchil Córdoba

Jerez 0.0000 0.2248 0.4705 0.0709 0.0000
Carmona 0.1081 0.0160 0.0000 0.0000 0.0000
Mengíbar 0.0315 0.1069 0.4625 0.0000 0.0000
Pinos Puente 0.0035 0.0994 0.0106 0.7632 0.2238
Purchil 0.0468 0.1065 0.0418 –0.0080 0.0699
Córdoba 0.0690 0.1410 0.0364 0.0258 0.0293

Table 5 HOMOVA analysis
between each pair of O. crenata
populations. Lower matrix 
diagonal: Bartlett’s statistic (B).
Upper matrix diagonal: corre-
sponding p values

Población Jerez Carmona Mengíbar Pinos Puente Purchil Córdoba

Jerez 0.0000 0.0569 0.6154 0.0000 0.0000
Carmona 2.0494 0.0000 0.0000 0.0559 0.0000
Mengíbar 1.2152 2.0085 0.3337 0.0000 0.0569
Pinos Puente 0.9572 1.9920 1.0317 0.5345 0.0919
Purchil 1.4331 1.9598 1.3568 0.9620 0.2727
Córdoba 1.6366 2.3353 1.2937 1.2513 1.1914

Table 6 AMOVA analysis for
three different grouping criteria
for O. crenata populations
from Andalucía

Source of variation % Total variance and p-values depending of grouping hypotesis

1. Oriental and 2. Geographical 3. Guadalquivir 
occidental Andalucíaa distancesb valleyc

Among groups –0.74% (p=0.7423) 1.24% (p=0.2008) –0.71% (p=0.6533)
Among populations 6.17% (p<0.001) 4.70% (p=0.008) 6.10% (p<0.001)

within groups
Within populations 94.57% (p<0.001) 94.06% (p<0.001) 94.60% (p<0.001)

a Oriental and occidental Andalucía: 2 groups (Jerez/Carmona/Córdoba vs Mebgibar/Pinos Puente/
Purchil)
b Geographical distances: 3 groups (Mengíbar/Córdoba vs Pinos Puente/Purchil vs Jerez/Carmona)
c Guadalquivir valley: 2 groups (Jerez/Carmona/Mengíbar/Córdoba vs Pinos Puente/Purchil)



O. crenata populations this fact is favoured by an effi-
cient dispersal of the seeds by humans, machinery, ani-
mals or wind. The exchange of host seeds mixed with
parasite seeds could also contribute to this fact. This
gene flow increases the effective size of the population
avoiding genetic-drift effects (Ellstrand and Elam 1993).
Djè et al. (1999), attributed the low genetic differentia-
tion among sorghum populations to a large population
effective size. The huge amount of seed that a broomrape
plant produces per generation could be favouring this
drift restriction.

Autogamous species promote differentiation among
populations, while in mixed mating or allogamous spe-
cies the differences are less marked (Hamrick and Godt
1989). This study detects higher phenotypic diversity
within populations than among them, an observation that
is consistent with the distribution of variation in allo-
gamous species (Schoen and Brown 1991). Intra-popula-
tion variation levels in populations from Andalucía
(94,29%) are similar to those described in other allo-
gamous species such as Buchloë dactyloides (Huff 
et al. 1993), Populus tremuloides (Yeh et al. 1995), 
Ancistrocladus koruensis (Foster and Sork 1997) or
Bankasia spp. (Maguire and Sedgley 1997). These re-
sults are expected considering the predominantly out-
crossing behaviour of O. crenata (Musselman 1986).
The characters that O. crenata shares with taxa showing
high genetic diversity are its high fecundity (a single
plant can produce more than 105 seeds (Pieterse 1979)),
its allogamous mating system and its dispersal mecha-
nisms. In the hemiparasitic allogamous plant Striga her-
monthica, low inter-population differentiation has also
been found (Bharathalakshmi et al. 1990). Our results
differ from those obtained in O. cumana Wallr. (Gagne 
et al. 1998) attacking sunflower where high levels of
variation among populations and low intra-population
variability were found, suggesting an autogamous repro-
duction system in this species.

O. crenata plants collected in six different regions of
Andalucía could be considered as members of the same
population where gene migration forces are continuous
and strong. Our results do not indicate an important geo-
graphical effect on population structure. It remains to be
determined if virulence genes are also homogeneously
distributed among these populations. This will require
pathotyping combined with genome analysis (Burdon
1993), which is currently hampered by the lack of de-
fined races in O. crenata and differential sets in V. faba.
Cubero and Moreno (1979) and Radwan et al. (1988)
found a very low level of host-parasite interaction, not
supporting the existence of races in O. crenata. Our
study confirms the lack of population diversification.
However, differences in the level of aggressiveness
among O. crenata populations have been proposed by
Verkleij and Pieterse (1994). The fact that a new race of
O. crenata attacking resistant vetches has been found in
Israel (Joel 1999) may be attributed to the extensive use
of a vetch variety that is resistant to the local broomrape
population (Goldwasser et al. 1996).

Although great genetic variation already exists within
populations of O. crenata, the complex inheritance and
apparently broad-based moderate levels of resistance
available have not effectively determined a selection for
virulence in the parasite, thus not contributing to any
clear evidence for the existence of races. However, the
occurrence of genetic variability within populations sug-
gests that races might develop as long as challenged by
narrow-based single genes of resistance, as has happened
with O. cumana in the sunflower where the extensive use
of single genes for resistance, acting at the penetration
event, have so far resulted in the rapid appearance and
spread of six races.

Further studies with molecular markers in other spe-
cies of the genus may contribute to an understanding of
other interesting aspects which refer to the genetic varia-
tion in these parasitic plants. The outcrossing behaviour
of the species may lead to the appearance of inter-specif-
ic crosses in the genus and a consequent change in the
host that might be monitored by molecular markers. In
fact, meiotic anomalies and variation in the basic number
of chromosomes have both been observed in O. crenata
(Moreno et al. 1979). Verkleij and Pieterse (1994) sug-
gested that comparative studies need to be carried out
with Orobanche biotypes in natural vegetation for a bet-
ter understanding of the evolution from wild parasitic
plants into aggressive parasitic weeds. The study of these
relationships in Andalucía would be of great interest
since different species of Orobanche parasitizing wild
species are found (Pujadas 1999).
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